APOBEC3G (A3G) is an effective cellular host defense factor under experimental conditions in which a functional form of the HIV-encoded protein Vif cannot be expressed. Wild-type Vif targets A3G for proteasomal degradation and when this happens, any host defense advantage A3G might provide is severely diminished or lost. Recent evidence cast doubt on the potency of A3G in host defense and suggested that it could, under some circumstances, promote the emergence of more virulent HIV strains. In this article, I suggest that it is time to recognize that A3G has the potential to act as a double agent. Future research should focus on understanding how cellular and viral regulatory mechanisms enable the antiviral function of A3G, and on the development of novel research reagents to explore these pathways.

The multifaceted characteristics of the double agent

APOBEC3G (A3G) is a member of a family of cytidine deaminases named after apolipoprotein B editing catalytic subunit 1 (APOBEC1) [1,2], which was the first enzyme discovered with the capacity for site-specific cytidine to uridine deamination (editing) of apolipoprotein B mRNA. Almost 9 years ago, Sheehy et al. published a paper showing that the reason why the HIV protein known as viral infectivity factor (Vif) was required for the virus to infect nonpermissive cells was that these cells expressed A3G. Vif enabled the virus to penetrate host defenses by inducing the destruction of A3G [3]. At that time, the story was simple and exciting: Vif induced the degradation of A3G [4,5], thus preventing A3G from being incorporated into nascent viral particles and thereby neutralizing the ability of A3G to hypermutate the single-stranded DNA (ssDNA) of HIV during reverse transcription after viral entry [6–8] (Figure 1, Box 1).

In the absence of functional Vif, A3G catalyzes dC to dU mutations, primarily in the minus strand reverse transcript, and this template dG to dA transitions in the protein coding plus strand during viral replication (Box 1). Some mutated virions can then integrate into the host cell chromosome, leading to the expression of viral proteins with missense substitutions or nonsense codons [9,10] (Figure 1). These findings are consistent with sequence analysis of HIV isolated from infected patients who had numerous dG to dA polymorphisms; in some instances, inactivating substitutions in the Vif sequence were identified [9]. The flanking nucleotide sequences of these single nucleotide polymorphisms were the same as those preferred at editing sites for A3G and its homolog A3F [9]. In a recent study, HIV genomes recovered from infected humanized mice expressing human A3G also contained dG to dA mutations with an A3G flanking sequence preference [11]. In most experimental systems, the absence of Vif enables sufficient dC to dU mutations to produce a reduction in proviral DNA, caused by the creation of abasic sites by uracil-DNA glycosylase, which is followed by DNA degradation [12,13]. In summary, A3G-mediated mutations, which occur in addition to the mutations stemming from low-fidelity reverse transcription and recombination of viral genomes, were initially proposed to be solely detrimental to the virus, because of their location in the HIV genome or their abundance.

Glossary

APOBEC: A family of proteins containing a zinc-dependent deaminase motif, named after the first enzyme in the family discovered, apolipoprotein B editing catalytic subunit 1. The family consists of activation-induced deaminase (AID), A1, A2, A3A-A3H and A4. Although A3G and A3F have a high level of identity and similar structural organization, they have different nearest neighbor preferences in single-stranded DNA for deamination and are different in their interaction with Vif, with A3G being more susceptible to Vif-dependent degradation. A3G protein is natively expressed at higher levels than A3F. HMM and LMM: High molecular mass and low molecular mass complexes (respectively) are operationally defined by biochemical sizing methods of A3G in cell extracts. They range in size from MDa to several hundred kDa for HMM, and a few hundred kDa to single units of A3G (46 kDa) for LMM. A3G HMM is heterogeneous in protein composition because A3G binds nonselectively to cellular RNAs, which in turn are associated with variety of cellular proteins. A3G LMM is considered to have few or no RNAs associated with A3G subunits. Permissive and nonpermissive cells: An operational term used to describe the ability of a cell to undergo a productive infection by a particular retrovirus (permissive) or not (nonpermissive). Proviral DNA: The double-stranded DNA copy of the retroviral RNA genome. SOCS (suppressor of cytokine signaling) box protein: A member of a family of proteins containing the SOCS amino acid motif. SOCS box-containing proteins are known to mediate an interaction between protein substrates targeted for degradation and the respective components of the ubiquitylation machinery. They do so by binding to protein substrates, elongin B/C proteins, cullin 5 and RBX2, which together interact with an E3 ubiquitin-protein ligase complex. There is a large diversity of SOCS box-containing proteins that serve as receptors for docking different substrates into the ubiquitylation machinery. Vif mimics these receptors when it binds A3G, thereby inducing its destruction. Vif (viral infectivity factor): A 21 kDa HIV-encoded protein containing multiple domains for diverse protein–protein–RNA interactions. Viral capsid: The retroviral RNA genome encased in an oligomeric viral protein shell minus the components that make up the viral envelope of the mature viral particle or virion. Viral replication: An inclusive term referring to the entire viral life cycle, which is not limited to reverse transcription.

ZDD (zinc dependent-deaminase): A sequence that is part of the cytidine deaminase protein fold consisting of five anti-parallel β-sheets supported by two α-helices that position three cysteine/histidine residues for the coordination of a zinc atom, a water molecule and a glutamic acid residue for proton shuttling in a hydrolytic deamination reaction, leading to the conversion of cytidine/deoxy-ctydine to uridine/deoxyuridine with NH3 as the leaving group.
Soon after the discovery of A3G deaminase-dependent antiviral activity, experiments evaluating the functional requirement of residues in the catalytic domain of A3G through site-directed mutagenesis and deletion analyses revealed that A3G has deaminase-independent antiviral activities [14,15]. Interactions of A3G with viral and host cell proteins and RNAs were shown to inhibit HIV reverse transcription and promote A3G assembly within viral...
In the deaminase-dependent mechanism, A3G catalyzes zinc-dependent hydrolytic deamination of deoxycytidine to form deoxyuridine in HIV DNA [6,7]. These mutations arise primarily on the HIV minus strand as a result of A3G having a requirement for a ssDNA substrate [8,43]. The frequency and distribution of mutations determined by the 3' to 5' processivity of A3G activity on ssDNA [44] and limited temporally by the transient availability of ssDNA arising from RNase H-mediated removal of the RNA genome template following reverse transcription [34] and before the formation of double-stranded DNA (dsDNA) by second strand synthesis. A3G deaminase activity is thought to be the consequence of protein–protein and protein–ssDNA interactions that drive assembly of larger A3G–ssDNA aggregates presumed to be essential for deaminase activity [8,43,45].

Vif is a mimic of cellular SOCS box proteins that function as receptors for protein substrates targeted for ubiquitylation through the elongin B/C–Cullin5–ring box protein 1 (RBX2)–E3 ligase complex and degradation via the 26S proteasome [46,47]. Vif–A3G binding requires residues within the N terminus of A3G [29,48–50] and residues in the N terminus [31–33,51–53] and C terminus [4,54,55] of Vif.

In the deaminase-independent mechanism, A3G is predicted to contain an N-terminal and a C-terminal zinc-dependent deaminase or ZDD fold [1]. Efforts to delineate the contribution of each ZDD to antiviral activity showed that deaminase activity resides exclusively within the C-terminal ZDD [15,56–58]. These studies were controversial because they also suggested that deaminase activity might not be required for antiviral activity in experimental systems [14,58,59]. A3G has an intrinsic ability to bind RNA and ssDNA nonspecifically [43,57,80,61]. This characteristic is undoubtedly essential to the deaminase-independent antiviral activities that have been described in more recent literature, by which A3G binds nucleic acids to inhibit RNA mad priming of first strand synthesis [62], strand transfer activity [63], reverse transcript elongation [64] and inhibition of proviral dsDNA integration [65,66].

There is agreement that protein–protein and protein–RNA interactions with the N-terminal half of A3G are required for encapsidation. However, there is disagreement over whether the interactions of A3G with Gag [46,67,68] and/or viral RNA and/or cellular RNAs [60,61,69–72] are sufficient to place A3G, along with the viral genome, inside the virion core in such a way that it will be ideally positioned to inhibit reverse transcription after viral entry.

A3 proteins are not essential for cell survival [22], but they could have important functions related to their ability to bind RNA, including the regulation of microRNA functions [23] and suppression of endogenous retroviral elements [24–27]. In fact, A3G/A3F-mediated mutation of viral genomes might have contributed to the rapid evolution of primate retroviral and endogenous retroviral-like elements [28]. Species-specific and APOBEC3 homolog-specific [29] sequence preferences might have contributed to the present day primate species tropism of HIV/simian immunodeficiency virus [30–33].

A question that has become increasingly perplexing is why does pre-existing cellular A3G fail to deliver a preemptive antiviral strike on incoming viruses? Why is it necessary to slip a few A3G subunits into the viral particle like the proverbial Greeks in the Trojan Horse? The answer to the question might be that cellular A3G cannot gain access to the proviral DNA, which is protected by the nuclear protein core of the virus where reverse transcription takes place unless it is encapsidated or the nascent ssDNA is itself shielded from cellular A3G [34]. In addition, cells might regulate A3G for its interaction with cellular RNAs, and this might limit the availability of A3G and/or its access to nascent single-stranded proviral DNA.
Box 2. Ribonucleoprotein complexes containing A3G

Purified A3G forms homomultimers in a concentration-dependent manner through protein–protein interactions [73,74]. Binding of either RNA or ssDNA to A3G will promote higher order oligomerization of A3G subunits, as evidenced under defined in vitro conditions by native gel shift analyses [43] and atomic force microscopy [45]. RNP complexes containing A3G referred to as HMM complexes colocalize with P-bodies and stress granules [44,45,75–80], where cells degrade or recycle RNAs and RNP proteins. Glyceraldehyde 3-phosphate dehydrogenase sedimentation or size exclusion chromatography of cell extracts have demonstrated that A3G associates with these MDa-sized RNPs within minutes of its translation [17,18]. Whereas HMM A3G predominates in cells that are permissive to HIV infection, cell types considered to be refractory to HIV infection (e.g. resting CD4+ T cells, monocytes and mature dendritic cells [75,77,80]) maintain A3G as a component of LMM complexes. Through mechanisms that are not understood, cytokines, dsRNAs and other growth factors regulate the expression of A3G and interconversion of LMM and HMM complexes. The significance of the interconversion of the aggregation states of A3G to its antiviral activity is currently an underdeveloped issue that needs further investigation [37,38].

All or most of the conversion of LMM to HMM complexes is attributable to RNA-bridged A3G oligomerization, and to date no protein components of P-bodies or stress granules have been shown to bind directly to A3G. As part of HMM complexes, A3G has low or no deaminase activity, but RNase digestion of isolated HMM complexes restores deaminase activity [74,75].

At the heart of this conundrum is the seemingly contradictory concept that the intrinsic ability of A3G to bind RNA is essential for the deaminase-independent antiviral mechanism by which A3G enters the viral particle (Box 1), and yet binding to viral RNA in the capsid or binding to cellular RNAs inhibits A3G deaminase-dependent mutagenesis of ssDNA during reverse transcription (Box 2). Different cells can regulate the interaction of A3G with cellular RNAs in contrasting ways to generate low molecular mass (LMM) forms of A3G (relatively free of RNA) and high molecular mass (HMM) aggregates of A3G bound to RNA in ribonucleoprotein (RNP) complexes (Box 2, Figure 1). The larger aggregates colocalize with cytoplasmic P-bodies and stress granules that function in RNA and RNP protein degradation, and/or serve as temporary storage depots. In HMM aggregates, A3G is believed to have little or no antiviral activity, yet Vif mediates A3G degradation in both the LMM and HMM forms [18].

The higher level of deaminase activity in LMM A3G and its prevalence in nonpermissive cells led to the hypothesis that LMM A3G is necessary and sufficient for cells to be refractory to HIV infection; however, this has since been retracted [35,36]. Recent experiments testing this hypothesis showed that an aggressive knockdown of LMM A3G in resting CD4+ T cells by RNA interference or Vif-mediated degradation of A3G did not render these cells permissive to HIV infection [37,38]. The implication of the new data is that LMM A3G pre-existing in cells is not sufficiently available or active to inhibit HIV replication.

The new data raise an important question: if A3G in nonpermissive cells is not sufficient to inhibit viral replication, does it have no activity at all, or does it have a low level of mutagenic activity? This is an important question because earlier studies (reviewed in [39]) warned that, rather than providing antiviral host defense, A3G/A3F activities might diversify the viral genome, a tenet predicted by evolutionary biologists studying retroviruses and retroviral elements [28]. Recent papers have confirmed this possibility under experimental conditions, where A3G/A3F promoted mutations that benefited HIV [40,41] and induced a drug-resistant phenotype [42]. The available data support the possibility that the activity of LMM A3G in infected nonpermissive cells is sufficient to promote mutations in the HIV genome. Moreover, the new data suggest that the mutational activity might not be sufficient to inhibit viral replication either during the early or late stages of the viral life cycle (Figure 1).

Embracing the uncertainty with a view toward proactive intervention

The important question before us is: what level of A3G mutagenic activity might benefit the virus compared with what level is necessary to inhibit viral replication? The simplest answer might be that a little DNA deaminase activity benefits the virus and a high level of activity destroys the virus. Unfortunately, we do not know what these levels are, and the location of mutations within the viral genome can be more important than the number of mutations. To explore this possibility, future research should determine the naturally occurring mechanisms regulating the interconversion of HMM and LMM, and how this might determine A3G mutagenic activity. Based on the results, we should gain an understanding of the paradoxical situation by which A3G host defense mechanisms are sequestered in RNPs and inactivated in permissive cells during HIV infection. The results will have a significant effect on translational research and therapeutic development using A3G/Vif as a target.

From one point of view, the available data suggest that if naturally expressed A3G activity is too low to provide host defense, inhibiting Vif alone might have limited immediate therapeutic value, and in fact could have the unintended long-term consequence of aiding the virus. Conceptually, one therapeutic strategy might be to inhibit A3G deaminase activity and allow Vif to destroy A3G. This might potentially reduce the emergence of viral resistance in patients who are also receiving other antiretroviral therapies. The significant challenge here is that deaminase inhibitors that are selective for A3G/A3F would have to be developed, so that they will not be cytotoxic to intermediary metabolism. Skeptics will suggest that inhibiting a host defense factor because it might induce beneficial mutations in the virus ignores the greater possibility that A3G mutations might overall be deleterious to the virus.

An alternative approach is to activate the mutagenic efficiency of HMM A3G, and enhance its access to viral replication complexes. Could such activators enable cells to ‘fight back’ even though Vif is destroying A3G? In this case, combining A3G activators with Vif inhibitors might address the need both to reduce viral infection and to lessen the frequency with which drug resistant strains emerge. Similar to deaminase inhibitors, deaminase activators will need to be A3G/A3F-specific.

It is vital that efforts continue to be made to explore the cellular and viral factors that regulate the double agent
A3G. Undoubtedly, the development of novel probes and research reagents will be crucial to our understanding of mechanisms that determine what role A3G plays in infected cells. Despite progress in these areas, the therapeutic value of A3G inhibitors or activators, with or without Vif antagonists, will not be fully appreciated until such compounds are tested in clinical trials.

Conflict of interest statement
H.C. Smith is a full time faculty member in the Department of Biochemistry and Biophysics and the Center for RNA Biology at the University of Rochester, School of Medicine and Dentistry, Rochester, NY. He is also founder of OyaGen Inc. and a consultant for the company as its chief scientific officer. OyaGen Inc., is a therapeutic development company seeking novel therapeutics using APOBEC editing mechanisms as targets (www.oyageninc.com)

Acknowledgements
I thank Jenny M.L. Smith for the illustrations. I am grateful to Steve Dewhurst, Jason Salter, Jenny Smith and members of the Smith and Wedekind laboratories and OyaGen, Inc for critical reading of the manuscript. This work was supported by Public Health Service grants (NIAID R21 058789, NINDS R21 067671) and the Bill and Melinda Gates Foundation grant awarded to HCS, a Public Health Services grant (NIAID R21 058789, NINDS R21 067671) and the Bill and Melinda Gates Foundation grant awarded to HCS, a Public Health Services grant (NIAID R21/R33 076985) awarded to Joseph E. Wedekind and a Public Health Services Training grant (NIAID 048615) and Developmental Center for AIDS Research grant (NIAID P30 078498) awarded to Steve Dewhurst.

References
2 Smith, H.C. (2009) The APOBEC1 Paradigm for Mammalian Cytidine Deaminases that Edit DNA and RNA, Landes bioScience
17 Soros, V.B. et al. (2007) Newly synthesized APOBEC3G is incorporated into HIV virions, inhibited by HIV RNA, and subsequently activated by RNase H. PLoS Pathog. 3, e5
21 Miller, J.H. et al. (2007) The dimerization domain of HIV-1 viral infectivity factor Vif is required to block virion incorporation of APOBEC3G. Retrovirology 4, 81
41 Kim, E-YB. et al. (2010) Human APOBEC3G-mediated editing can promote HIV-1 sequence diversification and accelerate adaptation to selective pressure. J. Virol. 84, 10402–10405
42 Sadler, H.S. et al. (2010) APOBEC3G contributes to HIV-1 variation through sublethal mutagenesis. J. Virol. 84, 7396–7404
50 Santa-Marta, M. et al. (2005) HIV-1 Vif can directly inhibit apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G-mediated cytidine deamination by using a single amino acid interaction and without protein degradation. J. Biol. Chem. 280, 8765–8775
51 Schrofelbauer, B. et al. (2006) Mutational alteration of human immunodeficiency virus type 1 Vif allows for functional interaction with nonhuman primate APOBEC3G. J. Virol. 80, 5984–5991
52 Chen, G. et al. (2009) A patch of positively charged amino acids surrounding the human immunodeficiency virus type 1 Vif SLVx4Yx9Y motif influences its interaction with APOBEC3G. J. Virol. 83, 8674–8682
56 Hache, G. et al. (2005) The retroviral hypermutation specificity of APOBEC3F and APOBEC3G is governed by the C-terminal DNA cytosine deaminase domain. J. Biol. Chem. 280, 10920–10924
57 Navarro, F. et al. (2005) Complementary function of the two catalytic domains of APOBEC3G. Virology 333, 374–386
59 Bishop, K.N. et al. (2006) Antiviral potency of APOBEC proteins does not correlate with cytidine deamination. J. Virol. 80, 8450–8458
60 Khan, M.A. et al. (2007) Analysis of the contribution of cellular and viral RNA to the packaging of APOBEC3G into HIV-1 virions. Retrovirology 4, 48
61 Svarovskaia, E.S. et al. (2004) Human apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (APOBEC3G) is incorporated into HIV-1 virions through interactions with viral and nonviral RNAs. J. Biol. Chem. 279, 35822–35828
65 Mbisa, J.B. et al. (2007) HIV-1 cDNAs produced in the presence of APOBEC3G exhibit defects in plus-strand DNA transfer and integration. J. Virol. 81, 7099–7110
72 Bach, D. et al. (2008) Characterization of APOBEC3G binding to 7SL RNA. Retrovirology 5, 54
74 Wedekind, J.E. et al. (2006) Nanostructures of APOBEC3G support a hierarchical assembly model of high molecular mass ribonucleoprotein particles from dimeric subunits. J. Biol. Chem. 281, 38122–38126